Choose Your Location:  

Support   

Contact Us

CPVC Piping System Resources

CORZAN® INDUSTRIAL SYSTEMS

The resources, advice and insights needed to design long-lasting, reliable industrial systems from the pioneer in CPVC material.

Blog Feature

CPVC Solvent Cement  |  Corzan® CPVC  |  Piping Systems

Is It Possible to Weld Pipe and Sheet Together?

The question often arises, can I weld pipe and sheet together? The answer is yes, but the process requires skilled thermoplastic welders who are properly trained and have been tested just as metallic certified welders are tested.

Read More

Blog Feature

Corzan® CPVC  |  Piping Systems

CPVC Myths Debunked

Designers and engineers often specified metal piping for industrial applications in the past based on the material’s familiarity. Today, metal piping is still used in some environments because of misperceptions regarding chlorinated polyvinyl chloride (CPVC) piping.

Read More

Blog Feature

Piping Systems

Why CPVC Piping is More Energy-Efficient Than Metal Piping

Minimizing energy costs is one of the main areas of opportunity for plant owners looking to increase their bottom-line. At a macro level, according to the U.S. Energy Information Administration (EIA), the industrial sector uses more energy than any other sector, consuming about 54% of the world’s total delivered energy. Engineers are always looking for ways to optimize system processes to improve energy efficiency to decrease energy expenses. Proper piping material selection is one opportunity to limit energy consumption. Take a look at how CPVC piping compares to metal piping in terms of energy efficiency across a system’s lifecycle, even before the pipe is installed.

Read More

Blog Feature

Corzan® CPVC  |  Piping Systems

STRESS AND THE MODULUS OF ELASTICITY FOR CPVC PIPING VS. METAL

Industrial plants are challenging environments for piping systems, which are subject to extreme pressures, temperatures, stress and even impact. No matter what piping material is specified, piping system stresses must be considered and modifications made during system design to prevent issues that could require extensive repair or replacement.

Read More

Blog Feature

Installation Guide  |  Piping Systems

HOW TO SOLVENT WELD CPVC IN HOT WEATHER

There are a few available methods for joining CPVC pipes and fittings, but solvent welding is often recommended as the optimal solution because of the strong, reliable bond it forms between adjoining pieces of material. Solvent cement isn’t glue­—rather, it’s a chemical compound that untangles the surface molecules of CPVC material, freeing them to bond with those of another CPVC piece. The result is a fully fused joint that maintains the chemical resistance, temperature and pressure bearing capabilities of the original material. To reach optimal joint strength, the solvent cement must adequately soften the surface material, and enough time must be allowed for setting and curing. Curing is when the solvent flashes off or evaporates, allowing the newly formed joint to dry and harden. In cold weather applications, solvent cement and CPVC molecules slow down, requiring more solvent to soften the material and more time to cure or harden the joint. Conversely, in hot environments, the molecules speed up, creating different potential challenges for installers. By following a few simple guidelines, reliable CPVC joints can be solvent welded at temperatures exceeding 95°F (35°C).

Read More

Blog Feature

Piping Systems

FRICTION LOSS IMPACTS PIPING SYSTEM PERFORMANCE

The results of friction loss in industrial piping systems can decrease operational efficiency and productivity – and eventually result in downtime and costly repairs. Friction loss affects flow rate and fluid pressure within the piping system and must be considered during system design.

Read More

Blog Feature

Piping Systems

Delivering Value for Your Chemical Piping System

Long-term performance, trouble free operation and consistent results are critical to manufacturing facilities’ operational success. While facilities must first satisfy their functional needs, the initial cost of construction is often a factor when selecting the right piping for a chemical processing plant. Purchase price is only part of the equation when choosing a piping system that will provide long-term performance. A lifecycle cost analysis tailored to the specific application can help you get the best value, considering factors such as fluid temperature, line pressures, the chemical environment, etc.

Read More

Blog Feature

Piping Systems

How Proper Piping Material Selection Can Reduce Harmful Biofilm Formation

Biological contamination presents a serious concern for many applications, even in industrial plants. Biofilm formation allows unsafe bacteria and organisms to grow and contaminate supplies of water and other transported fluids. Considering alternative piping materials ideally suited to resist biofilm formation can help minimize this significant health risk.

Read More

Blog Feature

Piping Systems  |  Semiconductor

WHAT DOES IT MEAN FOR A PIPE TO BE FIRE RESISTANT?

This post was originally published in November of 2017, and has been updated with more information and resources, including two burn test videos.   When we talk about plastic and fire resistance, most people conjure up images of melting plastic in a campfire or bending plastic spoons with a lighter. While many plastics don’t stand up well to heat and fire (namely polypropylene and polyethylene), it’s not true of all thermoplastics. Specifically, chlorinated polyvinyl chloride (CPVC) is engineered to limit flammability and smoke production. In fact, many applications that specify CPVC piping because of its heat, pressure and corrosion resistance capabilities do so because it also satisfies strict regulations around flame and smoke resistance. But what qualities should you look for in a thermoplastic piping system to ensure it satisfies your application’s fire resistance requirements?

Read More

Blog Feature

Installation Guide  |  Piping Systems

The Dos and Don’ts of CPVC Piping Solvent Cement Welding

This post was originally published in July of 2017, and has been updated with more information and resources, including a solvent cement joint burst test video.   When installing chlorinated polyvinyl chloride (CPVC) piping systems, you have a few different options to join the piping and fittings. Depending on the pipe size, the pipe and fittings can be threaded or flanged together, each offering a strong, durable union. However, for most applications, Corzan® Industrial Systems recommends solvent cement welding. Solvent cement is not glue. Instead it is a fast, easy installation process that uses solvents and resin to chemically fuse the pipe and fitting together at a molecular level, essentially creating one continuous piece of plastic. In fact, solvent cement is the only joining method recommended for system features like expansion loops because it allows the pipe to bend and move without breaking or weakening the joint seal. To ensure the solvent cement is applied properly throughout your process system, we've put together the following dos and don’ts to remember throughout the seven step joining process. If the provided solvent cement installation do's and don'ts are followed, see how reliable the joints become by watching the burst test video below.

Read More