Support   

Contact Us

CPVC Piping System Resources

Corzan® Industrial Systems

The resources, advice and insights needed to design long-lasting, reliable industrial systems from the pioneer in CPVC material.

Blog Feature

Piping Systems

Friction Loss Impacts Piping System Performance

The results of friction loss in industrial piping systems can decrease operational efficiency and productivity – and eventually result in downtime and costly repairs. Friction loss affects flow rate and fluid pressure within the piping system and must be considered during system design.

Read More

Blog Feature

Piping Systems

Delivering Value for Your Chemical Piping System

Long-term performance, trouble free operation and consistent results are critical to manufacturing facilities’ operational success. While facilities must first satisfy their functional needs, the initial cost of construction is often a factor when selecting the right piping for a chemical processing plant. Purchase price is only part of the equation when choosing a piping system that will provide long-term performance. A lifecycle cost analysis tailored to the specific application can help you get the best value, considering factors such as fluid temperature, line pressures, the chemical environment, etc.

Read More
Understanding CPVC Piping Report

Understanding CPVC Piping Report

Delve deeper into CPVC's capabilities, benefits and performance in the harshest industrial applications.

Blog Feature

Piping Systems

How Proper Piping Material Selection Can Reduce Harmful Biofilm Formation

Biological contamination presents a serious concern for many applications, even in industrial plants. Biofilm formation allows unsafe bacteria and organisms to grow and contaminate supplies of water and other transported fluids. Considering alternative piping materials ideally suited to resist biofilm formation can help minimize this significant health risk.

Read More

Blog Feature

Piping Systems  |  Semiconductor

What Does it Mean for a Pipe to be Fire Resistant?

This post was originally published in November of 2017, and has been updated with more information and resources, including two burn test videos.   When we talk about plastic and fire resistance, most people conjure up images of melting plastic in a campfire or bending plastic spoons with a lighter. While many plastics don’t stand up well to heat and fire (namely polypropylene and polyethylene), it’s not true of all thermoplastics. Specifically, chlorinated polyvinyl chloride (CPVC) is engineered to limit flammability and smoke production. In fact, many applications that specify CPVC piping because of its heat, pressure and corrosion resistance capabilities do so because it also satisfies strict regulations around flame and smoke resistance. But what qualities should you look for in a thermoplastic piping system to ensure it satisfies your application’s fire resistance requirements?

Read More

Blog Feature

Installation Guide  |  Piping Systems

The Dos and Don’ts of CPVC Piping Solvent Cement Welding

This post was originally published in July of 2017, and has been updated with more information and resources, including a solvent cement joint burst test video.   When installing chlorinated polyvinyl chloride (CPVC) piping systems, you have a few different options to join the piping and fittings. Depending on the pipe size, the pipe and fittings can be threaded or flanged together, each offering a strong, durable union. However, for most applications, Corzan® Industrial Systems recommends solvent cement welding. Solvent cement is not glue. Instead it is a fast, easy installation process that uses solvents and resin to chemically fuse the pipe and fitting together at a molecular level, essentially creating one continuous piece of plastic. In fact, solvent cement is the only joining method recommended for system features like expansion loops because it allows the pipe to bend and move without breaking or weakening the joint seal. To ensure the solvent cement is applied properly throughout your process system, we've put together the following dos and don’ts to remember throughout the seven step joining process. If the provided solvent cement installation do's and don'ts are followed, see how reliable the joints become by watching the burst test video below.

Read More

Blog Feature

Chemical Processing  |  Piping Systems

Why CPVC Is Ideally Suited for the Chemical Processing Industry

The following is an excerpt from “CPVC Use in the Chemical Processing Industry.” Download the full ebook to learn more about where CPVC can be used in the chemical processing industry, which chemicals CPVC stands up against and how CPVC compares to alternatives in various applications.   The chemicals market, according to Chemical Processing, is currently worth around $1 trillion and is projected to grow to more than $5 trillion by 2022. With 40,000 existing facilities—and thousands more planned—the chemical processing industry (CPI) is becoming increasingly competitive. Broadly defined as the chemical conversion of raw materials to finished products, the Chemical Processing Industry includes the following (and much more): Traditional chemicals, both organic and inorganic Petroleum Petrochemical Refining Pharmaceutical facilities Marine support and offshore In this growing sector, plant managers and engineers seek systems that are more cost effective, reliable and specially engineered to meet their process’ demands. What is the role of piping material selection in recognizing greater plant performance and reliability?

Read More

Blog Feature

Installation Guide  |  Piping Systems

Can Corzan CPVC Piping Be Buried?

This post was originally published in November of 2017, but has been updated to be more comprehensive, including a video of CPVC during an impact test.   Whether used for general drainage, fire suppression, mining, or another industrial application, CPVC piping systems may need to be run underground. Most concerns about underground CPVC usage arise from incorrect assumptions about CPVC’s physical properties, specifically impact resistance. Underground piping is exposed to: Various-sized rocks and other abrasives. The weight of the backfill and any surfacing material. Vehicle and/or machinery traffic (depending on the application). Corrosives found within the soil. Fluctuating, potentially extreme temperatures. These potentially harmful conditions beg the question: Can CPVC piping be buried?

Read More

Blog Feature

Piping Systems

The Fundamentals of Industrial Piping System Inspections

In March of 2005, an explosion at a Texas City BP oil refinery (the third largest in the United States) killed 15 workers, injured another 180 and severely damaged the plant. The explosion occurred when a distillation tower flooded with hydrocarbons and became over pressurized. Though not directly caused by a piping failure, it was largely the result of improper safety procedures and red flags over the preceding decade, including: Broken alarms Broken gauges Overly thinned pipe Five managers over a six year span A critical component of plant safety, which could help prevent the next failure, is to learn how to maintain and inspect the piping system as part of a comprehensive process safety management (PSM) program. Properly implemented programs help prevent events like the catastrophic Texas City refinery explosion.

Read More

Blog Feature

Piping Systems

Not All CPVC Piping Systems Perform the Same

This post was originally published in August of 2017, and has been updated with more information and resources, including a video comparison burst test.   Since its introduction to the market in 1959 by The Lubrizol Corporation, chlorinated polyvinyl chloride (CPVC) has proven to be an attractive alternative to traditional industrial metallic piping systems for a variety of chemical process environments. CPVC is inert to most mineral acids, bases, salts and aliphatic hydrocarbons, which eliminates corrosion and scaling concerns. In addition, CPVC offers high impact resistance, pressure capabilities and heat distortion temperature (HDT), making it ideal for harsh industrial applications. By choosing CPVC material, industrial processes can improve their piping system's service life, lower maintenance costs and reduce downtime. But it is important to note, not all CPVC offers the same level of performance, and CPVC should not be confused with the limited capabilities of polyvinyl chloride (PVC) piping.

Read More

Blog Feature

Installation Guide  |  Piping Systems

The Key Material Characteristics that Enable Pipe Deflection

This post was originally published in December of 2017, but has been updated to be more comprehensive, including a video of CPVC during a flattening test.    Linear expansion is an unavoidable phenomenon that affects all piping material—including both metals and plastics. If a run of pipe is constrained at both ends, an increase in temperature will cause the material to expand, resulting in compressive stress. When this mounting force exceeds the material’s allowable stress, damage occurs to the piping system. During piping system design, architects and engineers must build in expansion loops to deflect this compression stress. In each of the three types, a right angle is required.     Expansion loops, expansion offsets and changes of direction provide a linear direction for the pipe to move. But, which characteristics of the material enable it to deflect without causing damage to the pipe?

Read More