Choose Your Location:  

Support   

Contact Us

CPVC Piping System Resources

CORZAN® INDUSTRIAL SYSTEMS

The resources, advice and insights needed to design long-lasting, reliable industrial systems from the pioneer in CPVC material.

Blog Feature

Chlor Alkali  |  Power Generation  |  Water Treatment

As Membrane Technology Advances, Are Your Piping Systems Keeping Pace?

Membrane technology continues to advance at a lightning pace. A type of separation process, membrane technology, is being utilized in processes as varied as absorption, distillation, fouling, microfiltration, nanofiltration, reverse osmosis, ultrafiltration, and desalination. And as the technology advances, so does the dependence on piping systems to maintain fluid stream purity.

Read More

Blog Feature

Corzan® CPVC  |  Power Generation

Corzan® CPVC Reduces Power Plant Downtime and Maintenance Costs

In power plant operations, process chemicals can degrade and reduce the service life of many metal piping systems, potentially causing expensive unscheduled maintenance, disruptive outages in critical operations, and property-damaging leaks in these systems. All of these issues require responsible operators to establish and implement corrosion control and management programs to assure plant availability. These programs typically amount to an ongoing and significant outlay of financial and other resources.

Read More
Understanding CPVC Piping Report

Understanding CPVC Piping Report

Delve deeper into CPVC's capabilities, benefits and performance in the harshest industrial applications.

Blog Feature

Corzan® CPVC  |  Power Generation

Design for Pipe Stress in Power Plants

The hazardous caustic and corrosive chemicals and levels of heat and pressure involved in treating and moving large volumes of water in power plant operations make it incumbent upon system designers to choose from among the few materials for pipe, valves and fittings that can reliably stand up to these rigors. In plants from gas turbine combined cycle to nuclear to combined heat and power, one of the most reliable such materials is thermoplastic Corzan® CPVC.

Read More

Blog Feature

CPVC  |  Power Generation

Corzan® CPVC Installation Opportunities in Power Generation Plants

Power generation plants of all types – from gas turbine combined cycle to combined heat and power – move large quantities of water, caustics and corrosives. Corzan® CPVC (chlorinated polyvinyl chloride) piping has provided operational advantages and cost savings to the power generation industry for decades, enhancing performance in a range of applications in new and existing facilities for long-term reliability.

Read More

Blog Feature

Piping Systems  |  Power Generation

Why CPVC is Used For Power Generation Plants

This post is an excerpt from the free downloadable ebook, CPVC Use in Power Generation Plants. To access the full ebook, click here. Power generation plants of all types—from gas turbine combined cycle to nuclear to combined heat and power—all require the movement of large amounts of water and handle caustics and corrosives. Unfortunately, due to the nature of the chemicals used and levels of heat and pressure involved, there are few pipe, valve, fitting, ducting and tank liner material choices available that can provide long-term reliability. That said, judiciously assessing these material options on a system-by-system basis can directly increase operational efficiency, minimize downtime and improve bottom-line performance.

Read More

Blog Feature

Piping Systems  |  Power Generation  |  Semiconductor

WHAT IS DEIONIZED WATER AND WHICH PIPING MATERIALS CONVEY IT EFFECTIVELY?

Demineralized or deionized water is used for many lab reactions, laboratory equipment washing, industrial processing applications and more. This water has been purified of ions, minerals, bacteria and other organics that may have been present. Any of those contaminates can alter chemical reactions, cause scaling and corrosion for piping systems, and create a number of unique problems for specific applications. Once demineralized and deionized, water can still harm piping systems if the wrong material is specified because pure water becomes more reactive. Learn about the use cases, qualities and preferred piping systems of purified water to keep your flow free of contaminates and your piping system running longer.

Read More

Blog Feature

Chemical Processing  |  Chlor Alkali  |  Fabrication  |  Mineral Processing  |  Power Generation  |  Semiconductor  |  Water and Wastewater Treatment

6 Industries Benefiting from Corzan CPVC Sheet and Liners

Chlorinated polyvinyl chloride (CPVC) is a versatile compound manufactured into many geometries, including sheet, piping and fittings. When produced as sheet, CPVC can is often fabricated for various industrial products, including tanks, scrubbers, ventilation processes and more. The sheet can also be used as a liner and overwrapped with fiber-reinforced plastic (FRP). FRP-lined CPVC utilizes CPVC’s corrosion resistance and relies on the FRP to increase its heat performance and mechanical strength. Take a look at a few examples of how CPVC sheet is fabricated for use across different industrial plants and applications. For information on other industrial applications where CPVC sheet is used, contact Corzan® Industrial Systems to speak to a representative.

Read More

Blog Feature

Piping Systems  |  Power Generation

HOW TO OPTIMIZE EFFICIENCY AND RELIABILITY IN POWER GENERATION COOLING WATER SYSTEMS

Power generation plants rely on systems that are both efficient and reliable. Efficiency comes from the optimal usage of energy, while reliability is a result of minimal breaks and corresponding downtime. An important cog in a power generation plant is the cooling water treatment system, which removes unwanted heat within a plant. In the United States, for example, thermoelectric power plants—including coal, nuclear, natural gas and oil—make up about 90% of all power generation plants. Though processes within each type of thermoelectric plant differ, each requires cooling. When the power generation plant’s cooling system cannot efficiently remove heat, especially in warmer climates, the entire plant suffers costs of excess water, wastewater and energy. For cooling systems—which include water loops, towers and headers—our product and engineering team list the primary issues plant managers face, and how schedule 80 CPVC piping can help prevent these problems.

Read More

Blog Feature

Chemical Processing  |  Chlor Alkali  |  Mineral Processing  |  Power Generation  |  Semiconductor  |  Water and Wastewater Treatment

6 Key Industrial Uses of Corzan CPVC [Infographic]

As the pioneer in chlorinated polyvinyl chloride (CPVC) technology, Corzan® Industrial Systems has proven its value and reliability for use in many types of industrial plants. To learn more about CPVC and its compatibility and uses across six demanding industrial applications, view our latest infographic.     If you prefer not to open the PDF infographic, read on for a text-only version. Corzan® chlorinated polyvinyl chloride (CPVC) is an important engineering thermoplastic due to its: High heat distortion temperature. Certified for use up to 200°F (93.3°C). Relatively low material cost. Has successfully replaced and outlasted metals and other costly materials. Inherent chemical resistance. Corrosion-free piping to maintain pressure ratings, flow rates and fluid purity, and to prevent costly repairs. Simple and superior installation. Solvent welding fuses the piping and fitting at the molecular level, maintaining system performance. Fire-related safety advantages. Heat transfer coefficient is approximately 1/300th that of steel, and the material does not sustain burning and requires no flame to install. Certified pressure rating. Pressure rated in accordance with ASTM D2837, having a Hydrostatic Design Basis (HDB) of 4000 psi at 72°F (23°C) and 1000 psi at 180°F (82.2°C). Learn more about CPVC by visiting our resource library, featuring ebooks, white papers, practical tools and more.

Read More

Blog Feature

Piping Systems  |  Power Generation  |  Semiconductor  |  Water and Wastewater Treatment

WHICH PIPING MATERIALS MAINTAIN WATER PURITY STANDARDS?

When the purity of water and other solutions is critical, each component that comes into contact with the fluid—such as the piping material—must maintain high-purity standards throughout its life. The smallest system impurities can: Inhibit the effectiveness of the system Reduce the life of expensive systems Increase processing downtime Cause health issues for the end product Impurities in a solution are a result of leaching, or the dissolution of metals, solids and chemicals into a fluid. Consider lead piping, for example. Before the Environmental Protection Agency (EPA) implemented the Lead and Copper Rule (LCR) in 1991, lead piping was used for plumbing. After the lead pipe began to corrode—whether from water temperature, acidity or a lifetime of wear—the lead would leach harmful contaminants into the water supply. Read on to see why industries should care about leaching and the materials that maintain water purity.

Read More