English | Espanol   Support   

Contact Us

CPVC Piping System Resources

Corzan® Industrial Systems

The resources, advice and insights needed to design long-lasting, reliable industrial systems from the pioneer in CPVC material.

Blog Feature

Installation Guide  |  Piping Systems

How to Integrate CPVC Into Existing Piping Systems

Every now and then, piping systems require upgrades or repairs, whether as a result of expected chemical corrosion or accidental pipe damage. Alternatively, industrial plants will often pilot test a small run of CPVC in an existing system to verify its compatibility and reliability. When the need to integrate CPVC pipe into an existing system arises, engineers have two priorities: minimize downtime and maximize value—including material costs, labor costs and system lifecycle. Whether your existing system is CPVC, another thermoplastic or metal, CPVC piping may be the ideal replacement solution thanks to its chemical resistance and compatibility, high heat distortion temperature and pressure rating. Fortunately, integrating CPVC into an existing system, regardless of the existing material, is a relatively easy, straightforward process.

Read More

Blog Feature

Fabrication  |  Installation Guide  |  Piping Systems

CPVC Chemical Resistance to Caustic Soda (Sodium Hydroxide)

Sodium hydroxide, commonly known as caustic soda, is one of the most common industrial chemicals. A versatile alkaline, caustic soda is highly reactive and effective at breaking down certain compounds. Common caustic soda applications include the: Pulp and paper industry for pulping and bleaching processes. Wastewater treatment industry for pH neutralization and wet-air scrubbers. Food and beverage industry as a cleaning agent. Personal care industry, such as soap making. Power generation industry for regenerating ion demineralization resin beds. Semiconductor industry for etching, plating acid neutralization and cleaning. Aluminum processing applications for dissolving compounds and extracting impurities. For processing and storage of caustic soda, metals—such as stainless steel or carbon steel—or thermoplastics—such as polyethylene, polypropylene, PVC, and CPVC—are often used. But the corrosive nature of caustic soda, especially at elevated temperatures and concentrations, can shorten the life of any industrial system. With proper pipe and tank material selection, industrial applications can prolong their useful life.

Read More
Understanding CPVC Piping Report

Understanding CPVC Piping Report

Delve deeper into CPVC's capabilities, benefits and performance in the harshest industrial applications.

Blog Feature

Chemical Processing  |  Chlor Alkali  |  Mineral Processing  |  Power Generation  |  Semiconductor  |  Water and Wastewater Treatment

6 Key Industrial Uses of Corzan CPVC [Infographic]

As the pioneer in chlorinated polyvinyl chloride (CPVC) technology, Corzan® Industrial Systems has proven its value and reliability for use in many types of industrial plants. To learn more about CPVC and its compatibility and uses across six demanding industrial applications, view our latest infographic.     If you prefer not to open the PDF infographic, read on for a text-only version. Corzan® chlorinated polyvinyl chloride (CPVC) is an important engineering thermoplastic due to its: High heat distortion temperature. Certified for use up to 200°F (93.3°C). Relatively low material cost. Has successfully replaced and outlasted metals and other costly materials. Inherent chemical resistance. Corrosion-free piping to maintain pressure ratings, flow rates and fluid purity, and to prevent costly repairs. Simple and superior installation. Solvent welding fuses the piping and fitting at the molecular level, maintaining system performance. Fire-related safety advantages. Heat transfer coefficient is approximately 1/300th that of steel, and the material does not sustain burning and requires no flame to install. Certified pressure rating. Pressure rated in accordance with ASTM D2837, having a Hydrostatic Design Basis (HDB) of 4000 psi at 72°F (23°C) and 1000 psi at 180°F (82.2°C). Learn more about CPVC by visiting our resource library, featuring ebooks, white papers, practical tools and more.

Read More

Blog Feature

Fabrication  |  Installation Guide

The 3 Key Factors in CPVC Welding Rod Reliability

As the saying goes, “a chain is only as strong as its weakest link.” With an industrial system, the same rule applies. Though welding rod material accounts for a seemingly insignificant fraction of a system, if it fails—whether from corrosion, pressure or temperature demands—the whole system is affected. Due to chlorinated polyvinyl chloride’s (CPVC) inherent chemical resistance and overall performance, CPVC sheet is often fabricated for different industrial uses. Whether the CPVC sheet is fabricated to be the tank lining in an air scrubber, for a storage tank built entirely out of CPVC sheet, or for a specialty fitting, the welded seams must maintain the strength and reliability of the CPVC material. In each case, correct welding rod selection and effective welding techniques directly correlate to how long the system will last before requiring repair.

Read More

Blog Feature

Installation Guide  |  Piping Systems

The Dos and Don’ts of Cutting CPVC Pipe

One of the benefits of working with chlorinated polyvinyl chloride (CPVC) pipe is that it can be cut with a variety of different tools that don’t require any electricity or heat. However, different cutting methods are preferred over others, depending on the application. When cutting CPVC pipe, it is important to make a square, flat cut. An uneven cut limits the bonding area and weakens the fitting. To help you make the best possible cut, we’ve put together the following dos and don’ts when cutting CPVC pipe in different situations.

Read More

Blog Feature

How CPVC Chemical Compatibility is Determined

This post is an excerpt from the white paper, Chemical Resistance and Chemical Applications for CPVC Pipe and Fittings. To access the full white paper, click here. When considering a piping material for your industrial application, it’s important to evaluate its compatibility with the chemicals you’ll be transferring and storing. CPVC is a widely used piping material because of its superior resistance acids, bases and salts.This compatibility has been proven over nearly 50 years of experience in the field, the chemical resistance capabilities of CPVC have been confirmed through work with numerous outside testing laboratories around the world. Equally important is the fact that chemical resistance has been determined, and confirmed, using two widely accepted standards: ISO 22088 ASTM D543

Read More

Blog Feature

Fabrication  |  Piping Systems

How CPVC Improves Performance of Industrial Wet Scrubbers

In industrial applications with harmful particulate and pollutive byproducts, air scrubbers are often used to meet emissions standards. A scrubber is a system that cleans or purifies air by removing gasses, particulates, or otherwise harmful compounds from a system’s emissions. There are many kinds of scrubbers available and their specific functions depend on the compound being removed from the processed stream. For example, power systems require scrubbers along with combustion vents to remove particulates from the generator or boiler. In any scrubber that handles corrosive compounds, CPVC is a viable choice for tank lining, drain piping, and more. Wet scrubbers in particular, which use continuous sprays of neutralizing fluids to control harmful emissions, benefit from the chemical compatibility of CPVC to improve the performance and overall lifespan of the scrubber.

Read More

Blog Feature

Fabrication  |  Piping Systems

Industrial CPVC Piping Systems: When to Use Schedule 80, Schedule 40 or CPVC-Lined FRP

When highly corrosive chemicals are used in industrial processing applications, chlorinated polyvinyl chloride (CPVC) is often specified. Depending on the unique system conditions and applications, different CPVC piping variations—such as schedule 80 piping, schedule 40 piping, or even CPVC-lined FRP—may be recommended. Use this guide to learn about the general differences between the three options to help determine the CPVC type that is ideal for your application.

Read More

Blog Feature

Fabrication  |  Installation Guide

The Basics of CPVC Hot Air Welding

Hot air welding is a joining method that uses high heat to make chlorinated polyvinyl chloride (CPVC) material reach its melt state. Pushed together for a certain amount of time at a specific pressure, this method allows the surface molecules of the two pieces to interlock, fusing them together. Hot air welding is an essential technique for CPVC sheet fabrication and can also be used to join pipes and other geometries when other joining methods are not an option.

Read More

Blog Feature

Installation Guide  |  Piping Systems

How to Solvent Weld CPVC in Hot Weather

There are a few available methods for joining CPVC pipes and fittings, but solvent welding is often recommended as the optimal solution because of the strong, reliable bond it forms between adjoining pieces of material. Solvent cement isn’t glue­—rather, it’s a chemical compound that untangles the surface molecules of CPVC material, freeing them to bond with those of another CPVC piece. The result is a fully fused joint that maintains the chemical resistance, temperature and pressure bearing capabilities of the original material. To reach optimal joint strength, the solvent cement must adequately soften the surface material, and enough time must be allowed for setting and curing. Curing is when the solvent flashes off or evaporates, allowing the newly formed joint to dry and harden. In cold weather applications, solvent cement and CPVC molecules slow down, requiring more solvent to soften the material and more time to cure or harden the joint. Conversely, in hot environments, the molecules speed up, creating different potential challenges for installers. By following a few simple guidelines, reliable CPVC joints can be solvent welded at temperatures exceeding 95°F (35°C).

Read More